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AbstmO--The paper investigates heat transfer in annular laminar undisturbed flow of two immiscible 
liquids, with constant heat-flux generated at the wall of the tube. It presents an analytical solution for the 
fully developed temperature field. This is used to obtain a more general solution from a model, describing 
the temperature field as a superposition of the fully developed and the developing fields. This superposition 
model is solved by an orthogonal collocation method. An asymptotic model for short entry lengths is also 
described. 

Calculations for a kerosene-water system, show that the superposition solution converges to the 
entrance solution below 100 diameters and converges asymptotically to the solution of the fully developed 
temperature field beyond 5000 diameters. 

The effect of the wavy interface is assessed experimentally for annular kerosene-water flow, by 
comparing predicted and measured temperature profiles. It is found that experimental profiles are con- 
siderably flatter and measured Nusselt numbers for the kerosene phase are accordingly higher by 40-320% 
as compared to the undisturbed flow analyses. 

1. INTRODUCTION 

The laminar annular flow regime is rarely encountered in gas-liquid systems, but in liquid-liquid 
systems it can prevail over a significant range of flow rates (Hasson et al. 1974). 

Problems of corrosion and fouling may conceivably be alleviated by having an immiscible 
liquid film such as kerosene flowing around a corrosive or fouling core of an aqueous liquid 
solution. In such a system heat-transfer to the core liquid could be deleteriously affected by the 
poor thermal conductivity of the wall liquid. The present study aims to explore the magnitude 
of this effect, while at the same time contributing to the fundamental understanding of heat 
transfer in laminar annular liquid-liquid flow. 

The system of interest here is annular vertical flow of two liquids with unequal densities. 
Most studies deal with equal density liquids. It has been shown (Hasson et al. 1974) that small 
density differences may affect considerably the velocity field and hold-up in vertical liquid- 
liquid flow. 

Previous heat-transfer studies provide solutions of the temperature field for annular laminar 
flow of equal density immiscible liquids, with constant wall temperature (Bentwich & Sideman 
1964; Sideman & Peck 1965). The present study provides solutions for heat transfer in annular 
laminar flow of two immiscible liquids, with constant heat flux at the wall, taking into account 
density differences. 

In this work, three heat transfer undisturbed flow models were studied: an asymptotic model 
for fully developed temperature field; an entrance model, applicable for short entry lengths, and 
a superposition model, applicable for the whole heated section. 

An estimate of the effect of the wavy interface was obtained by referring to experimental 
measurements of temperature profiles. 

2. METHODS OF SOLUTION 

2.1. General equations 

A control volume is considered (figure 1), bounded by the cylindrical surface of the tube's 
wall and by two cross sections of the pipe. The outer liquid is denoted by superscript (2) and 
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Figure 1. Heat transfer model in annular flow. 
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the inner liquid by superscript (1). The physical properties of each of the two fluids are taken at 
the average of the temperature range considered. A constant heat flux qw is penetrating the wall 
of the tube at r = R, while the temperature of the inlet, at z = 0, is an arbitrary function of r, 
To(r). It is assumed that the flow is fully developed throughout the heated section and that axial 
diffusion is negligible compared with axial convection. The interface is assumed to be un- 
disturbed and cylindrical, being at a radial distance r = R,, which is the average value calculated 
from the solution of the undisturbed flow field (Hasson et al. 1974). 

The energy balance over the control volume yields: 

.)1 0 [ 0 1  . v(l) OT (° ,~(i)-I 
- -~- -z  = o,, ;Tr tr--~r ] O<-r<-R,  z>O. [1] 

a,(~) are the thermal diffusivities of the liquids and v u) are the velocity distributions, obtained by 
integration of the momentum balance equation (Hasson et al. 1974): 

v (i)* { M ( i ) [ o l l t  ) , (l) 1 
= -- r*2] + ~-T~5 Vrn(2)* l ,  

• v (e)* = [M(2) (I  - r . 2 )  + a (l) In r .2 ]  

[21 

[31 

where #") are liquid viscosities, v Ci)* are dimensionless velocities, M °) are dimensionless 
pressure drops, N (;) are dimensionless density differences, o °) are hold-up fractions, r* is a 
dimensionless radial coordinate and v,. (2)* is the dimensionless interracial velocity: 

v(°* = ~.~, [4] 

r 
r* = --  [5] 

R '  
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a (2) = 1 - a (1), [7] 

] 
MO ) = - Ldz pO)gj [8] 

N 

~(o NR2 
=4#-~'  [9] 

where P is the pressure, g is the gravitational acceleration and N is a dimensional density 

difference. 
N = [pO)_ p(2)]g. [10] 

The boundary conditions are: 

OT o) 
at r = 0  =0, [11] Or 

at r = Rm T tl) = T ~2), [12] 

k o) OT°) = k (2) 0T(2) [13] 
Or Or ' 

k(2) ~T (2) = 
at r=R ar -q~" [14] 

The initial conditions are: 

at z = 0 T (I) = To °), [15] 

T (2) = To (2), [16] 

k °) are the thermal conductivities and To °l are the inlet temperature distributions. 

2.2. Asymptotic solution for the fully developed temperature field 
The fully developed temperature field will be denoted by subscript F (i.e. TF). The 

differential equations [1] and the boundary conditions [11]-[14] remain unchanged, but [15]-[16] 
for initial conditions are replaced by the following overall energy balance: 

f A OCpv TF dA - f Ao pCov To dA = - 2R ~rq~z [17] 

where p is the density, Cp--tbe specific heat and A, Ao--the cross sectional areas at a distance 
z and at the inlet respectively. 

The system of differential equations [1] with boundary conditions [11]-[14] and initial 
condition [17] is solved by separation of variables. The detailed solution is given by Fink (1975). 
The final equations, for uniform inlet temperatures, give the dimensionless temperature dis- 
tributions as functions of the dimensionless radius r* = dR and the dimensionless axial 
distance z* = z/D as follows: 

T~')*= {IM(l'a(" + '°Oc-~v,.(2)*lr*~-l M(l)r*'} + C(') . z* + K . P °), [18] 

T;2 )  = L[M(Z)(r*Z\ - 4 lr*4~] + a°)r*Z(ln r*z - 2) + B In r *z] + C (z). z* + L .  p(Z) [19] 
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where the dimensionless temperatures T#* and the dimensionless constants 

follows: 

C (i) are as 

T # *  = T # '  p(i), [201 

C(i)* = 32g(i~,  (i) 
N R  3 [21] 

The dimensional constants P"), a, B, K and L are as follows: 

p(~) = 16/x")at (~) 
a N R  4 , 1221 

8q~, tz (2) 
K ~  p~)ce (2) 

a = . , [231 
Of (1) - i M  (2) - B 

p(1) C (1) 

i-m ~ - ~  r , ti) 3 r 
P "-'o , , . ( 2 ) ( , ) . , ' ~ / ' ~  ., < 2 ) . 1 ~ ( 1 ) l l i ( 2 ) ~  ( , ) ,  1 } ] _ [a(i)]2[ln ao) - B = w l l n  a -,-~...-2~,~,,, I,~ - . . . .  I , - a  (1) 1], [24] 

,~, k /~ ] L 

K = Q(I)Cp(')[ To(l)Q m - Id  + pt2)Cp(2)[ To(2)Q(2) + KLQ (2) -/2] 
p(l) c (i)Q(l) + at2) C (2)Q(2) , i25] 

P P 

L = K - KL 1261 

where Ib  I2 and KL are as follows: 

1r,,l~2R8 f 7 7 , ( l )  r -  (1) q2.., 
u . t ,  r _ ( l ) 1 2 J  r i , c ( l )12r^ . ( l )12+  t"  M(l)ot(l)~ (2),..~ l ~  J' . ( 2 ) , /  [ 

I1 = 128/~(l)2o0(l)tu ] [~-~tl,, ] tu ] ~ -T~  'm [ ~ v , .  ] j ,  [27] 

= 1raN2R 8 - 5 < , > +  

+ ,no<']] 

+4Ba(l)-(~-4B)[a(I)]2-~[a(I)]4+[a(l)]2{4B+3[a(1)]2}lna (I) 

_[a(1)]2{2 B + [a(I)]2} in2 a(l>)), [28] 

1 . KL = - . ~  [ [  M(2){a<i)-~[a(i)]2i + [a(')]2[ln a ( ' ) -  2] + B ln a( ')]} 

{~ (1) "l 
1 #~ . ( 2 ) , t  _ ~ - ~ .  M(')la")12 + ~ ~,, j ,  [291 

Q(~) are the volumetric flow rates of the liquids. 
Heat  flux distributions q #  are derived f rom the temperature distributions as follows: 

q (i) = _ k o) aTv (° [301 
Or " 
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Bulk temperatures T& are derived by using the velocity profiles u(‘) and the temperature 
disttibutions T$), as follows: 

I 

R” 
21rr#)TF(‘) dr 

T#= O @I) , [311 

R 

2~ru’*‘TF’” dr 
T$%= Rm @’ . ~321 

Nusselt numbers N& are derived according to the following definitions: 

[341 

where q,,,, D,,, and TmF are the heat flux, the diameter and the temperature at the interface and 
T,,+ is the temperature at the wall. Expressions for qF(i), T& and Nu& are presented by Fink 

(1975). 

2.3 Superposition solution 

The temperature field is taken as a superposition of fully developed (TF) and developing 
(TD) fields (Siegel, 1958): 

T = TF + TD . [351 

Subtraction of the differential equations and boundary conditions for TF from those of the 
total temperature field T, yields the governing equations and boundary conditions for the 
developing temperature field TD. The differential equations [l] and the boundary conditions 
[ ll]-[ 131 remain unchanged but boundary condition [ 141 and inlet conditions [ 15]-[16] are 
replaced by: 

at r=R zcO 
ar 7 

at z=O T#) = T&I) - T#, [371 
TD(*) = To(*) - T#. [3gl 

T# are the fully developed temperature distributions with z = 0. 
The above system of differential equations is solved by the orthogonal collocation method, 

using Jacobi polynomials as trial functions (Finlayson 1972; Villadsen & Michelsen 1975). 
New radial coordinates are defined for the inner and for the outer liquid, in order to 

normalize the radial range in each of the two regions: 

#) = r* * ( > 7 7 rm 

p _ r* - r* m 
1-r:’ ]401 

where: 

R 
rf = l!! = [a(1)~1/2 

R ]411 
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The definition of x u) serves also the purpose of including the cylindrical symmetry boundary 
condition. 

The differential equations and the boundary and initial conditions in the new coordinate system 
x ") are: 

1 O [ '1)OT°U)] O T ° I  0 < x m < - l ,  A m > 0 ,  [42] 
V(, ) ox(1)[x- Tx- ] = 

• { OTo~2q OTo(2) 1 1 [X(2) + ,~] a X _ ~  ~__ . ~ 2  ~ O _  X(2) < 1, ~.(2) > 0" 
F(2) x(2) + 31 [431 

Boundary conditions: 

at x u) = 1 a n d  x (2) = 0 T o  ") = TD (2), [44] 

k ") aTom OTn (2) 
2 - ~  ~xm = 3' Oxa~ [451 

OTD (2) 
at X (2) = 1 Oxa) = O. [46] 

Initial conditions: 

a t  A " ) , h  ~ 2 ) = 0  

where: 

To m =  To m -  Tkld, [47] 

To <2)= To a ) -  Tk2d, [48] 

F (n = O/(1)I)(1) 
4N m , [49] 

F(2) = (1 - r*)2v (2) 
N(2) , [50] 

r* 
3' = 1 - r *  ' [5111 

]t (i) = Olt O) 
~ z .  [52] 

Discretization of the L.H.S. of [42] at Nj collocation points x[ I) which are zeros of Jacobi 
polynomials (Villadsen & Michelsen 1975), yields: 

where: 

OTD(I) NI+I 
--ff~TI ,,.,-x,". = ~ D,~Yj i = 1, 2 . . . . .  N., [53] 

ximaq + bq 
D~j = F[I) , [541 

F[ ° = F")lx.,=.,.,. [55] 

a o and bq are obtained from the derivatives of the trial polynomials (Villadsen & Michelsen 

1975) as follows: 

02To.} [ N,+l 
0x7~-I x"'=.,'" = i=, ~'~ aliYj i = 1, 2 . . . . .  N,  [561 

NI+I 
0To "~ E b,~Y, i :  1,2 . . . . .  N. [57] 
ax--- l = j=l 
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Yj are the temperatures of the inner liquid at the Nt collocation points and the interface 
temperature. 

Similarly, discretization of the L.H.S. of [43] at N2 collocation points x~ (2) yields: 

where: 

a-~-zElx(2)=x,(2) = j=,~_.~ H, jZi; i = 2 , 3  . . . . .  N2+ 1 [58] 

1 

l,j + v/,j H, j=  F(=) , 

E(2)= F(2)lx(~)=x~2) , 

[59] 

[6O] 

l~j and f~ are obtained in a similar way as aij and bi~: 

a 2TD(2) N2+2 
- l i~j  i = 2, 3 . . . .  N2 + 1, [61] 

a T D(2) n~ + 2 
0X-~lx(2)=x/2) = j=~ fijZj i =  2,3 . . . . .  N2+ 1. [62] 

Zj are the interface temperature, the temperatures at N2 collocation points for the outer liquid 
and the wall temperature. 

The boundary temperatures YN,+I, Z, and ZN~+2 are eliminated from [53] and [58] by using 
the three boundary conditions [44]-[46]. Details of the derivations are presented by Leib (1975) 
and the final system of equations is expressed as: 

0TD 
JA = ATD [63] 

A is a square matrix with dimensions (N~ + N2) x (NI + N2), T .  is the vector of the temperatures 
at the N~ + N2 collocation points and OTa/0k is the vector of the axial temperature gradients at 
the N~ + N2 collocation points. 

Equation [63] is a system of N~ + N2 coupled first order differential equations uncoupled by 
diagonalization of the square matrix A: 

A = Q A Q  -I [64] 

Q is the matrix of the Eigenvectors of A, Q-t is the inverse of Q and A is the diagonal matrix 
of the Eigenvalues of A. After some algebraic manipulations, [63] becomes: 

°(Q-ITD) = A(Q-ITD). [65] aA 

Equation [65] is a system of Nt + N2 uncoupled first order differential equations, directly 
solvable for TD, yielding: 

TD = Q exp (AA)Q-ITm [66] 

where use was made of the initial conditions [47]-[48], which in vectorial form are: 

at ;~ = 0 TI) = Trio. [67} 
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It may be shown that [66] is equivalent to the classical Graetz solution for a developing 
temperature field in a tube with Eigenfunctions approximated by discrete eigenvectors of the 
matrix A. 

Equation [66] gives the temperature distribution at Nl + N2 collocation points, together with 
the fully developed temperature Tv. At any other radial point, the temperature is determined by 
using the Lagrangian interpolation (Villadsen & Michelsen 1975). 

The heat-flux distribution, according to the principle of superposition, is: 

q(i) = qv(i) + qo(i) [68] 

where qo ") is derived by using [57] and [62] (qo <i) is defined, as q{O, by [26]). 
Bulk temperatures T~i/~ are defined by [27] and [28]. To <i) being given at discrete collocation 

points, the integrals in these equations are best performed by a Radau quadrature (Villadsen & 
Michelsen 1975). The total bulk temperature follows from the principle of superposition: 

T8 (')= T~b+ T~A. [691 

Nusselt numbers are defined by [29] and [30], where total temperatures take the place of the 
fully developed temperatures. 

Final expressions of total heat-flux distributions, bulk temperatures and Nusselt numbers 
are presented by Leib (1975). 

The convergence of the superposition solution was tested for various Jacobi polynomials 
and for growing numbers of collocation points NI and N2. The quickest convergence even at 
very short entry lengths, i.e. 0.1 diameters, was found with average values (bulk temperatures). 
Local values were found to converge beyond 10 diameters from the inlet, with N1 and N2 being 

each 16. 
The superposition solution and the solution of the fully developed temperature field, 

although presented for uniform inlet temperatures, are suitable for arbitrary inlet temperature 
distributions To(r). 

2.4 Entrance  solution 
The approach used by Bird et al. (1960) for single-phase flow may be extended to the present 

two-phase flow system, by introducing the two-phase flow field. 
Following Bird et al. (1960), the thermal boundary layer is assumed thin relative to the 

thickness of the outer liquid, so that the curvature of the tube may be ignored. It is possible 
then to change the cylindrical coordinate system to cartesian coordinates, thus simplifying the 
differential equations [1]. The velocity profile is reduced to a linear one, with the shape of the 
fully developed two-phase velocity profile at the wall of the tube. The above assumptions 
restrict the solution to very short entry lengths, where heat penetration is confined to the outer 
liquid alone. Thus, we need consider only the outer liquid. 

The governing equations and boundary and initial conditions are: 

Boundary conditions: 

Initial condition: 

I 0 [ 1  ] = oqJ [70] 
L,7  O,TJ J " 

at n = 0 ~0 = 1, [71] 

at 77 = oo ~0 = O. [721 

at h = 0  ~ = 0  [73] 
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where: 

~0 = & ,  [74] 
qw 

oq(2) 
, = [75] 

= ~ .  [76] 

The slope of the linear profile udR is calculated from the actual two-phase velocity profile, 
given by [3], according to: 

dv t2) . 
u0 = - R - - ~ -  r r=R [77] 

Equation [70] is converted to an ordinary differential equation by the similarity variable X: 

X =  71 ,~y-~. [78] 

Solution of the ordinary differential equation, gives the following expression for the 
temperature profile: 

T(2) = ,I- ( 2 ) .  q~R, , . a ,  x l / 3 fexP  ( - - X 3 )  x~" F[(2/3), X3]. ]  ] 
• o ~--~¢,23-~:,̂ J 1 r(2/3) . .[1 F(2/3) JJ" [79] 

F(2/3) is the Gamma function and r[(2/3), x 3] is the incomplete Gamma function, expressed as: 

fo F[(2/3), X 31 = X exp ( - X  3) dX. [801 

Details of the derivations are presented by Bird et al. (1960). However, in the present study, the 
two phase flow field is included through [77]. 

The thickness of the thermal boundary layer 6 may be defined as 

T(2)Iy=8 -- To (2) 
= 0.01. [81] 

T(2) _ To(2) 
y=0 

Equation [81] is solved by a trial and error method (Leib, 1975) using tabulated values of 
F[(2/3, X 3] (Abramowitz & Segun 1968), yielding: 

• I-O 11~ (2)-1113 
8 : 1.2228L  j z"'. IS2] 

Bulk temperatures are determined according to: 

f;' 21rrl)(2)To (2) dr  + 2~rru(2)T t2) dr  
Ta(2) = m Q(2) , [ 8 3 ]  

where: 

u~2> = Uo --'Y, [84] R 



542 T.M. LIEB, M. FINK and o. HASSON 

R8 = R - & [85] 

Nusselt numbers are determined according to [30]. 
Expressions for bulk temperatures and Nusselt numbers are presented by Leib (1975). 

3. CALCULATED RESULTS 

Results were calculated according to three respective models (entrance, fully developed and 

developing temperature fields), over the range of variables which were experimentally explored. 

As described below, the system investigated was heat transfer to water and kerosene in 

annular flow, with the less heat conducting liquid flowing around the wall. Solutions were 
obtained for a heat flux of about 15,000 kcal/(hr m2), a pipe diameter of 1.0 cm and a pipe length 

of about 1.0 m. 
Table 1 summarizes input parameters and flow characteristics predicted by the undisturbed 

flow solution (Hasson et  al. 1974). Reynolds numbers are defined according to Hasson et al. 

(1974) as follows: 

R e  (', = p("[(v(~'~ ~ - v.)lOm ]£(I) , [86] 

~(2)~(2)1 I"1 _ Fl 
Re(2) = v "ave , ' - - "  -~.,'mJ. /z(2 ) [87] 

V~'v ) are the average velocities of the liquids and v,, is the interfacial velocity. It has been found 

(Hasson et  al. 1974, and further data to be published) that measured pressure drops and 

hold-ups are in agreement with the laminar flow analysis up to Reynolds numbers around 

171)0--2000 after which deviations from predictions progressively increase first moderately and 

then markedly. 
Table 2 compares heat-transfer results at two dimensionless axial distances z*, defined by: 

z* z 
= ~. [881 

The dimensionless temperature difference is defined by: 

T " ' -  T c  
ATc")* = ~ [89] 

T ~ -  T c  

where T c  is the center line temperature. 
Figures 2-4 depict the temperature profiles, the bulk temperatures and the outer liquid 

Nusselt numbers for conditions of run A2. Comparison of the superposition solution with the 

Table 1. Input parameters and predicted flow characteristics 

Run Q~,) Q(2~ To "~ To ~2) Re (1~ Re ~2) ce ") -dpldz  v~ ~ v~ ) 
No. (titres/min) flitres/min) (°C) (°C) (N/rn 3) (m/sec) (m/sec) 

A2 2.03 2.45 28.4 28.4 4431 2526 0.48 9508 0.897 1.000 
B2 2.03 2.05 28.4 28.4 4294 2174 0.523 9552 0:823 0.913 
C2 2.03 1.5 28.4 28.4 3675 1618 0.586 9617 0.735 0.769 
A3 2.7 2.45 27.7 27.7 3166 2472 0.497 9592 1.154 1.033 
B3 2.7 2.05 27.8 27.8 2851 2107 0.536 9628 1.068 0.938 
C3 2.7 1.5 27.9 27.9 2326 1636 0.602 9678 0.952 0.8 
A4 3.45 2.45 27.8 27.8 1833 2441 0.514 9676 1.423 1.071 
B4 3.45 2.05 27.8 27.8 1491 2093 0.553 9704 1.324 0.973 
C4 3.45 1.5 27.9 27.9 873 1644 0.617 9741 1.186 0.831 
B5 2.7 2.05 28.5 51.9 4818 2637 0.572 9581 1.002 1.016 
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Table 2. Calculated heat transfer results at two entry lengths according to the various solutions 

z* = 75 z* = 5000 

Nua(2) A qr(2), NuB(2) x ,p (2), 
Run 
No. Entr. Supcrp. Entr. Superp. Superp. Develop. Superp. Develop. Supcrp. Develop. Superp. Develop. 

A2 22.67 21.09 0.0968 0.0962 10.66 10.64 11.9 11.85 0.4967 0.4982 0.0821 0.083 
B2 23.22 21.56 0.1154 0.1147 11.76 11.76 11.87 11.85 0 . 5 0 8  0.5109 0.0935 0.094 
C2 24.19 22.33 0.1552 0.1553 13.75 13.75 11.34 11.33 0,5324 0.5337 0.1161 0.1169 
A3 22.96 21.41 0.0983 0.0992 10.85 10.82 10.03 9.91 0 . 5 1 8  0.5214 0.0988 0.1017 
B3 23.44 21.79 0.1167 0.1167 11.9 11.89 9.86 9.77 0.5315 0.5357 0.1119 0.1142 
C3 24.72 22.87 0.158 0.1589 14.14 14.14 9.53 9.46 0.5574 0.5584 0.1361 1.1378 
A4 23.38 21.82 0.1001 0.1022 11.15 11.1 9,04 8.82 0.5319 0.5385 0.1087 0.1151 
B4 23.86 22.22 0.1187 0.1187 12.24 12.22 8.87 8.68 0.5465 0.5518 0.1223 0.1281 
C4 25.29 23.44 0.1608 0.1624 14,61 14.59 8.59 8.4. 0.5724 0.5794 0.1455 0.1519 
B5 25.48 21.79 0.3819 0.3107 13.23 13.21 10.99 10.9 0 .5264 0.5268 0.1103 0.1124 

! . 0  

z I 

ZE 

?,, 
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o 
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Figure 2. Comparison of temperature profiles according to the various solutions, with axial distance as 
parameter. 

solution of the fully developed temperature field shows that the temperature becomes fully 
developed at an inlet length greater than 5000 diameters. This relatively large entry length is at 
least one order of magnitude greater than that encountered in single-phase flow, and is an 
interesting two-phase flow effect. It may be also noted from figures 2-4 that the entrance 
solution holds up to an inlet length of 100 diameters. 

The comparison of Nusselt numbers and bulk temperatures given in Table 2 for inlet lengths 
of 75 diameters and 5000 diameters respectively, demonstrates the validity of the above results 
for all calculated conditions. 

All runs given in tables 1 and 2 except the last one (BS) assume equal inlet fluid 
temperatures. A case of special interest is the system whereby the outer liquid is preheated. 
(One might wish to recycle the exit heated outer liquid to the pipe inlet of heat economy and 
better heat transfer to the inner liquid). The effects involved are demonstrated in figure 5. It is 
seen that above a certain inlet temperature difference, the outer phase may initially lose more 
heat to the inner liquid than it receives from the wall, thus going through a minimum 
temperature, before eventually heating-up again. This effect is also reflected in the temperature 
profile of figure 8, by the existence of an inflexion point in the outer phase region. The inflexion 
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Figure 3. Comparison of bulk temperature differences according to the various solutions. 

point results from the development of two thermal boundary layers in the outer phase--one 
adjacent to the wall and other adjacent to the interface. The inflexion point disappears at 
sufficiently large axial distances when the two thermal boundary layers reach each other. 

Experimental evidence for this type of behaviour is presented later (figure 8). 

4. EXPERIMENTAL OBSERVATIONS 

The analytical study was complemented by experimental work carried out in the flow 
system described by Hasson et al. (1.974) and adapted for heat transfer measurements by Leib 

(1975). 
Measurements were taken with a well insulated brass tube, electrically heated by a heating 

tape around the wall, giving a heat flux of 15,000 kcal/(hr m2). The pipe was provided with an 
inlet nozzle for achieving annular flow. Existence of annular flow was confirmed by visual 
observations at the short glass pipe sections at inlet and outlet. The pipe was of 1.0 cm I.D. and 
of 1.0m length. Radial temperature profiles were measured with micro-miniature copper- 
constantan thermocouples, adjusted by a micrometric device with a precision of -0.1 mm. It 
was possible to obtain reliable temperature profiles at two cross-sections along the pipe, one at 
an entry length of 25 cm and the other at an entry length of 75 cm. 

Table 1 gives the range of variables experimentally investigated. The flow rates studied 
correspond to a moderately disturbed annular flow pattern and very low drop entrainment 

(so-called region I, Hasson et al. 1974). 
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Figure 4. Comparison of outer liquid Nusselt numbers according to the various solutions. 

The reliability of the experimental system was checked by single-phase flow heat-transfer 
measurements, with either water or kerosene flowing alone in the pipe. In all cases, single phase 
flow resulted in Reynolds numbers in the turbulent region (4200-11,000). As shown in figure 6, 
there was good agreement between measured values and values predicted from the well- 
established heat transfer correlations: 

.." \-O.14 J x,-O.054 Nus=O'O34Re°'SPr"3(~) (D) (for z = 0.25 m), 

/ ,~ -0.14 Nue=O.O23Re°'Sprl/S(~-ff). (for z = 0.75 m) 

[90] 

[91] 

where Re is the conventional single phase Reynolds number and/z~ is the viscosity at the wall 
temperature. 

Figure 7 compares observed temperature profiles with profiles predicted by the super- 
position solution. It also gives the measured temperature profiles for the flow of water alone at 
the same water flow rate used for the two-phase flow run, other conditions remaining the same. 
These results typify the conclusions reached from the heat-transfer measurements. 

It is observed that for two-phase flow, the experimental temperature profiles are markedly 
flatter than predicted by the undisturbed heat-transfer model. From a practical point of view, 
when the objective is to heat the inner liquid (water), the effect of the kerosene is to act as a 
thermal insulating layer. As seen from figure 7, while the presence of kerosene adversely affects 
the water temperature profile, it does so to a lesser extent than predicted by the undisturbed 
heat-transfer analysis. Thus the waviness counteracts to a certain extent the insulating effect. 

Theoretical analysis predicts that one might entirely overcome the thermal insulating effect 
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of the kerosene, by recycling the hot exit kerosene to the inlet of the pipe. An overall energy 
balance may be written as follows: 

p o)Cp(I)QO) A Ta (l) = po)Ct,(l)QO),~ Ta (l)' + p (2)Cp(2)Q(2) A TB (2). [92] 

AT~ (° is the bulk temperature difference between inlet and an axial distance z. The L.H.S. of 
[92] is the heat balance for single-phase flow of water, whereas the R.H.8. is the heat balance 
for annular water-kerosene flow, at the same flow rate of water and at the same heat flux at the 
wall. If ATB (2) = 0, then ATa (1) = ATB °)', or, the same amount of heat may be transferred to 
water in the water-kerosene system as in single-phase flow of water, with the same pipe length. 
Referring to figure 5, it is seen that for curves with minima in the bulk temperature difference of 
the outer phase, ATB (~ may be made zero by choosing the appropriate outlet axial position. 

Indirect experimental support to this effect is demonstrated in figure 8. As mentioned 
before, the analysis predicts that under preheated outer liquid conditions (i.e. unequal inlet 
temperatures), the temperature profile has an inflexion point in the outer phase region. Figure 8 
shows that despite the flattening effect of the waves, the existence of an irdtexion point is 
experimentally observed. 

Because of experimental and theoretical difficulties, it was not possible to extract 
measurements of inner liquid Nusselt numbers. Outer liquid Nusselt numbers are easier to 
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obtain and values extracted from the temperature  profiles are given in table 3. It is seen that 

they are 40-320% higher than predicted by the undis turbed laminar  heat- t ransfer  analysis,  with 

a clear trend for increasing deviat ions as the outer  liquid Reynolds  number  increases.  The data 

of table 2 can be reasonably correlated by the empirical equat ion:  

N .  (2) 
. . . .  10-4Re(2). - 1.5527 x z*0.3738 + 1. [93] 

/~/Utheo 

Table 3. Comparison of observed and predicted outer 
liquid Nusselt numbers 

Nua ~2) Deviation % 
z Exp. Exptl. from 

(m) No. Re (2) Exptl. Predicted Predicted 

0.25 

A2 2526 85.08 29.43 189 
B2 2174 68.49 29.82 130 
C2 1618 51.87 30.2 72 
A3 2472 74.15 29.79 149 
B3 2107 54.88 30.01 83 
C3 1636 42.91 30.77 39 
A4 2441 95.42 30.25 215 
B4 2093 69.49 30.53 128 
C4 1644 46.26 31.43 47 
B5 2637 93.91 30.49 208 

0.75 

A2 2526 77.26 21.09 266 
B2 2174 53.38 21.56 147 
C2 1618 51.28 22.33 130 
A3 2472 59.58 21.41 178 
B3 2107 52.78 21.79 142 
C3 1636 43.4 22.87 90 
A4 2441 92.09 21.82 322 
B4 2093 69.78 22.22 214 
C4 1644 39.91 23.44 70 
B5 2637 76.39 21.79 250 
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In fact, it would seem from this result and further study of the flow transition criterion 
which is in progress, that the experimental data of this work fall in the early region of transition 
from laminarity. 

5. CONCLUSIONS 

Solutions for heat transfer in annular laminar undisturbed two-phase flow with constant heat 
flux conditions have been derived. It is shown, that a superposition model adequately describes 
the temperature field over the whole length of the heated pipe. The fully developed temperature 
field solution is found to be applicable at much larger entry lengths than encountered in single 
phase flow. 

Heat transfer measurements show that for low viscosity liquids, such as water and 
kerosene, the inteffacial waviness leads to significant deviations from the predicted undisturbed 
heat transfer. From a practical point of view, the interfacial waviness acts to augment the heat 
transfer, counteracting the insulating effect of kerosene when it is desired to heat the inner 
liquid, water. Measurements of the Nusselt number for the outer phase were between 40-320% 
higher than predicted by the analysis. 
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